-

~

Better Parsing Through Lexical Conflict

Resolution

Nathan Keynes

November 2, 2007

Project Seminar Contents

/ Contents

e The problem - Lexical conflicts
e Assorted solutions
e Automatic resolution
e Results
Assumed background:

e Basic compiler theory (cs324 or equivalent)

N

Project Seminar The Problem

-

Conventional Parsing Model

e Separate lexical & syntactical modules
e Information loss due to separation

o “False” lexical conflicts

~

Project Seminar

The Problem

\ [
\]

¢ ¢)

[0-9]+

\\\[0—9]+\.[o—9]*

{

{
{
1
1

return

return

return

return

return

/ Conflict Example
Grammar:
subrange : ’[’ integer ’..’ integer ’]’ ;
integer : ‘‘[0-9]+’° ;
float : ¢“[0-9]1+\.[0-9]*’’

Example Derived Lex Specification:

LBRACKET; }
RBRACKET; }
RANGE; }
INTEGER; }
FLOAT; }

Project Seminar The Problem

/ Longest-match Conflict \

Input: [12..30]

Tokenize: [12. . 30 |

Result: LBRACKET, FLOAT, ERROR, INTEGER
RBRACKET

This cannot now be parsed with the given grammar.

Project Seminar The Problem

/ Identity Conflict

line: ’BEGIN’ ’:’ ‘‘[A-Za-z]+’’ ;

Derived Lex Specification:
BEGIN { return BEGIN; }
[A-Za-z]+ { return IDENT; }
R { return COLON; }

How do you scan 'BEGIN:BEGIN’?

N

Project Seminar Solutions

/ Possible Solutions

e Change the language
e User specified context
e Scannerless parsing

e Automatically generated context

Project Seminar Solutions

-

Why have languages like this?

o Greater flexibility

e Fasier for end-users

e Why not?

~

Project Seminar Solutions

/ User specified context \

® messy
e unnecessarily complex

e hard to maintain

\ [
\]

{ BEGIN(SR); return LBRACKET; }
{
o { return RANGE; }
{
{

return RBRACKET; }

<SR,0>[0-9]+
[0-9]+\ . [0-9] %

BEGIN(0); return INTEGER; }
return FLOAT; }

- /

Project Seminar Solutions

-

N

Scannerless parsing

e NSLR(1) Scannerless (Salomon & Cormack)[SC89]
e GLR Scannerless (Visser)|Vis97]

Pros/Cons:

e clean and easy to use
e non-canonical parse in most cases

e performance problems

~

Project Seminar Solutions

-

Automatic Context

partly proposed by Nawrocki|Naw91]
casy to use

canonical parse

increased generator/parser complexity

less powerful than scannerless methods?

10

Project Seminar Process

-

Resolution Process
Compute Lexical DFA (retaining conflicts) and
LALR(2) parser DPDA
For each DFA & LALR state combination, check if

the conflict can be resolved for that state
Record the correct action in a conflict table

Produce a “minimal” copy of the DFA for each

parser state

Minimize all DFA copies together using standard
algorithm

11

Project Seminar Process

/ Identity Conflicts \

For each DFA state, parser state, need two sets:

e NOW = all tokens accepted in the DFA state

o ACCEPTS = all tokens accepted in the parser state
Resolution = NOW N ACCEPTS

12

Project Seminar Process

/ Longest Match Conflicts \

For each DFA edge need the following sets:
e NOW = all tokens accepted in the source state
e NEXT = all tokens accepted in any successor state

e ALT = all tokens accepted in any successor of the

start state following a transition on the same symbol.

For each parser state need the following sets:

e ACCEPTS = all tokens accepted (shift or valid
lookahead)

e FOLLOWS = all tokens accepted after shifting a

K member of NOW /

13

Project Seminar Process

[a-eghj-2z][f].[i]

Figure 1: Combined DFA for ’if” and “|a-z]+”

For transition (3,]i]): NOW = {’if’},
\NEXT = {“la-z|+"}, ALT = {’if’)” [a-z]+" }.

14

Project Seminar Process

/T hen the resolution can be given by: \

if NOW is disjoint from ACCEPTS, then SHIFT
(accepting now is guaranteed to produce an

immediate syntax error)

else if NEXT is disjoint from ACCEPTS, then
ACCEPT (any future acceptable symbol from here

will produce an error)

else if ALT is disjoint from FOLLOWS, then SHIFT

(accepting results in the next token producing a

guaranteed error)

else DONTCARE (unresolvable conflict - either

decision is locally viable) /

15

Project Seminar Results

/ Results

e Keyd configuration file (unix daemon)
e [SO standard Pascal
e Parser runtime performance

Performance timings were obtained from a Pentium
[T1/500Mhz, with no compiler optimizations unless

otherwise stated.

N

Project Seminar Results
/ Keyd \

For a smallish configuration-type language (keyd), with

46 terminals, 22 nonterminals, and 69 productions:

e 152 of 156 DFA states have identity conflicts, 118
(77.6%) resolved

e 5236 DFA edges have longest match conflicts, 2707
(51.7%) resolved

Generation time was 2.4 seconds. Final DFA has 24 start
states and 3609 total states.

- /

17

Project Seminar Results

/ ISO Pascal

254 productions:

e 39 of 187 DFA states have identity conflicts, 11
(28%) resolved

e 3663 DFA edges have longest match conflicts, 1537
(42%) resolved

states and 393 total states.

KPascal parser as currently specified.

For ISO standard Pascal, 67 terminals, 135 nonterminals,

Generation time was 15 seconds. Final DFA has 61 start

Note that this is not technically a standards-conforming

~

/

18

Project Seminar Results

/ Performance \

A 4000 line, 117Kb Pascal file was used to compare the

runtime performance of the generated parser against the

equivalent bison/flex parser.
e test system, no compilers opts: 0.076 seconds
e bison/flex, no compiler opts: 0.048 seconds
e test system, -O2 compiler opts: 0.047 seconds
e bison/flex, -O2 compiler opts: 0.040 seconds

With compiler optimizations, the test system is just

outside 15% of the bison/flex version - with no automata

\optimizations. /

19

Project Seminar Next Semester

/ Further Work

e Automatic right context
e Exclusion or similar rules

e (Generator optimizations

20

Project Seminar references

/References \

[Naw91] Jerzy R. Nawrocki. Conflict detection and
resolution in a lexical analyzer generator.
Information Processing Letters, 38(6):323-329,
June 1991.

[SC89] Daniel J. Salomon and Gordon V. Cormack.
Scannerless nslr(1) parsing of programming
languages. SIGPLAN Notices, 24(7):170-178,
July 1989.

[Vis97] Eelco Visser. Scannerless generalized-lr parsing.
Technical Report P9707, University of

K Amsterdam Programming Research Group, /

21

Project Seminar

-

August 1997.

22

