
'

&

$

%

Better Parsing Through Lexical Conflict

Resolution

Nathan Keynes

November 2, 2007

Project Seminar Contents 1'

&

$

%

Contents

• The problem - Lexical conflicts

• Assorted solutions

• Automatic resolution

• Results

Assumed background:

• Basic compiler theory (cs324 or equivalent)

Project Seminar The Problem 2'

&

$

%

Conventional Parsing Model

• Separate lexical & syntactical modules

• Information loss due to separation

• “False” lexical conflicts

Project Seminar The Problem 3'

&

$

%

Conflict Example

Grammar:

subrange : ’[’ integer ’..’ integer ’]’ ;

integer : ‘‘[0-9]+’’ ;

float : ‘‘[0-9]+\.[0-9]*’’

Example Derived Lex Specification:

\[{ return LBRACKET; }

\] { return RBRACKET; }

‘‘..’’ { return RANGE; }

[0-9]+ { return INTEGER; }

[0-9]+\.[0-9]* { return FLOAT; }

Project Seminar The Problem 4'

&

$

%

Longest-match Conflict

Input: [12..30]

Tokenize: [12. . 30]

Result: LBRACKET, FLOAT, ERROR, INTEGER

RBRACKET

This cannot now be parsed with the given grammar.

Project Seminar The Problem 5'

&

$

%

Identity Conflict

line: ’BEGIN’ ’:’ ‘‘[A-Za-z]+’’ ;

Derived Lex Specification:

BEGIN { return BEGIN; }

[A-Za-z]+ { return IDENT; }

’:’ { return COLON; }

How do you scan ’BEGIN:BEGIN’?

Project Seminar Solutions 6'

&

$

%

Possible Solutions

• Change the language

• User specified context

• Scannerless parsing

• Automatically generated context

Project Seminar Solutions 7'

&

$

%

Why have languages like this?

• Greater flexibility

• Easier for end-users

• Why not?

Project Seminar Solutions 8'

&

$

%

User specified context

• messy

• unnecessarily complex

• hard to maintain

\[{ BEGIN(SR); return LBRACKET; }

\] { return RBRACKET; }

‘‘..’’ { return RANGE; }

<SR,0>[0-9]+ { BEGIN(0); return INTEGER; }

[0-9]+\.[0-9]* { return FLOAT; }

Project Seminar Solutions 9'

&

$

%

Scannerless parsing

• NSLR(1) Scannerless (Salomon & Cormack)[SC89]

• GLR Scannerless (Visser)[Vis97]

Pros/Cons:

• clean and easy to use

• non-canonical parse in most cases

• performance problems

Project Seminar Solutions 10'

&

$

%

Automatic Context

• partly proposed by Nawrocki[Naw91]

• easy to use

• canonical parse

• increased generator/parser complexity

• less powerful than scannerless methods?

Project Seminar Process 11'

&

$

%

Resolution Process

• Compute Lexical DFA (retaining conflicts) and

LALR(2) parser DPDA

• For each DFA & LALR state combination, check if

the conflict can be resolved for that state

• Record the correct action in a conflict table

• Produce a “minimal” copy of the DFA for each

parser state

• Minimize all DFA copies together using standard

algorithm

Project Seminar Process 12'

&

$

%

Identity Conflicts

For each DFA state, parser state, need two sets:

• NOW = all tokens accepted in the DFA state

• ACCEPTS = all tokens accepted in the parser state

Resolution = NOW ∩ ACCEPTS

Project Seminar Process 13'

&

$

%

Longest Match Conflicts

For each DFA edge need the following sets:

• NOW = all tokens accepted in the source state

• NEXT = all tokens accepted in any successor state

• ALT = all tokens accepted in any successor of the

start state following a transition on the same symbol.

For each parser state need the following sets:

• ACCEPTS = all tokens accepted (shift or valid

lookahead)

• FOLLOWS = all tokens accepted after shifting a

member of NOW

Project Seminar Process 14'

&

$

%

4

31
[f][i]

[a−eghj−z],[i]
[a−eghj−z],[f],[i]

’if’

2

"[a−z]+"

"[a−z]+"

[a−eghj−z],[f],[i]

[a−eghj−z],[f]

Figure 1: Combined DFA for ’if’ and “[a-z]+”

For transition (3,[i]): NOW = {’if’},

NEXT = {“[a-z]+”}, ALT = {’if’,”[a-z]+”}.

Project Seminar Process 15'

&

$

%

Then the resolution can be given by:

• if NOW is disjoint from ACCEPTS, then SHIFT

(accepting now is guaranteed to produce an

immediate syntax error)

• else if NEXT is disjoint from ACCEPTS, then

ACCEPT (any future acceptable symbol from here

will produce an error)

• else if ALT is disjoint from FOLLOWS, then SHIFT

(accepting results in the next token producing a

guaranteed error)

• else DONTCARE (unresolvable conflict - either

decision is locally viable)

Project Seminar Results 16'

&

$

%

Results

• Keyd configuration file (unix daemon)

• ISO standard Pascal

• Parser runtime performance

Performance timings were obtained from a Pentium

III/500Mhz, with no compiler optimizations unless

otherwise stated.

Project Seminar Results 17'

&

$

%

Keyd

For a smallish configuration-type language (keyd), with

46 terminals, 22 nonterminals, and 69 productions:

• 152 of 156 DFA states have identity conflicts, 118

(77.6%) resolved

• 5236 DFA edges have longest match conflicts, 2707

(51.7%) resolved

Generation time was 2.4 seconds. Final DFA has 24 start

states and 369 total states.

Project Seminar Results 18'

&

$

%

ISO Pascal

For ISO standard Pascal, 67 terminals, 135 nonterminals,

254 productions:

• 39 of 187 DFA states have identity conflicts, 11

(28%) resolved

• 3663 DFA edges have longest match conflicts, 1537

(42%) resolved

Generation time was 15 seconds. Final DFA has 61 start

states and 393 total states.

Note that this is not technically a standards-conforming

Pascal parser as currently specified.

Project Seminar Results 19'

&

$

%

Performance

A 4000 line, 117Kb Pascal file was used to compare the

runtime performance of the generated parser against the

equivalent bison/flex parser.

• test system, no compilers opts: 0.076 seconds

• bison/flex, no compiler opts: 0.048 seconds

• test system, -O2 compiler opts: 0.047 seconds

• bison/flex, -O2 compiler opts: 0.040 seconds

With compiler optimizations, the test system is just

outside 15% of the bison/flex version - with no automata

optimizations.

Project Seminar Next Semester 20'

&

$

%

Further Work

• Automatic right context

• Exclusion or similar rules

• Generator optimizations

Project Seminar references 21'

&

$

%

References

[Naw91] Jerzy R. Nawrocki. Conflict detection and

resolution in a lexical analyzer generator.

Information Processing Letters, 38(6):323–329,

June 1991.

[SC89] Daniel J. Salomon and Gordon V. Cormack.

Scannerless nslr(1) parsing of programming

languages. SIGPLAN Notices, 24(7):170–178,

July 1989.

[Vis97] Eelco Visser. Scannerless generalized-lr parsing.

Technical Report P9707, University of

Amsterdam Programming Research Group,

Project Seminar references 22'

&

$

%

August 1997.

